Automatic Target Recognition

[1] S.-H. Yu, A. Gandhe, and R. E. Smith, Bull, L., Bernado Mansilla, E. & Holmes J. (eds), Fused, Multi-Spectral Automatic Target Recognition with XCS, Learning Classifier Systems in Data Mining, Springer 2007

[2] A. Gandhe, S. H. Yu, R. Mehra and R. E. Smith, Fused, Multi-Spectral Automatic Target Recognition with XCS, Page 1874, Proceedings of GECCO 2007, ACM

[3] Ravichandran, B., Gandhe, A. and Smith, R. E., Robust Automatic Target Recognition using Learning Classifier Systems, Information Fusion: The International Journal on Multi-Sensor, Multi-Source Information Fusion, Vol 8, Pages 252-265, Elsevier

[4] Smith, R., Ravichandran, B., Gandhe, A. and Mehra, R., Developing a Robust, Integrated Learning System For the Modern Battlefield, Proceedings of the SPIE Conference on Modeling and Simulation for Military Applications, (part of the SPIE Defense and Security Symposium, Orlando, Florida, April 2006), SPIE

[5] Ravichandran, R., Gandhe, A., and Smith, R. E., XCS for Robust Automatic Target Recognition, Proceedings of GECCO 2005, ACM Press

[6] B. Ravichandran, A. Ghandhi, and R. E. Smith, Machine Learning for Robust Automatic Target Recognition, Proceedings of The SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery XII (OR49) SPIE 2005

[7] M. Huff, S. Yu, R. P. S. Mahler, B. Ravichandran, R. K. Mehra, and S. Musick. Unified Evidence Accrual for SAR: Recent Results. In Proceedings of SPIE Vol. 4052: Signal Processing, Sensor Fusion, and Target Recognition IX, 2000.

[8] R. P. S. Mahler, S. Yu, B. Ravichandran, and S. Musick. Application of Unified Evidence Accrual Methods to Robust SAR ATR. In Proceedings of SPIE Vol. 3720: Signal Processing, Sensor Fusion, and Target Recognition VIII, April 6-9, 1999.

[9] S. Yu and R. K. Mehra. Automatic Battle Damage Assessment using Laser Radar Imagery. In Proceedings of SPIE Vol. 3707: Laser Radar Technology and Applications IV, April 6-9, 1999.

[10] S. Yu, R. K. Mehra, and T. R. Witten. Automatic Mine Detection based on Ground Penetrating Radar. In Proceedings of SPIE Vol. 3710: Detection and Remediation Technologies for Mines and Minelike Targets IV, April 6-9, 1999.

[11] S. Yu, A. Gandhe, T. R. Witten, and R. K. Mehra. Automatic mine detection based on multiple features. In Proceedings of SPIE Vol. 4038: Detection and Remediation Technologies for Mines and Minelike Targets V, 2000.

[12] S. Yu, A. Gandhe, T. R. Witten, and R. K. Mehra. Physically based method for automatic mine detection using acoustic data – a transmission zero approach. In Proceedings of SPIE Vol. 4742: Detection and Remediation Technologies for Mines and Minelike Targets VII, 2002.

[13] S. Yu, A. Gandhe, and R. K. Mehra. Real-time adaptable subspace method for automatic mine detection. In Proceedings of SPIE Vol. 4742: Detection and Remediation Technologies for Mines and Minelike Targets VII, April 2002.

[14] S. Yu, T. R. Witten, and R. K. Mehra. Acoustic-Seismic mine detection based on spatialspectral distribution of poles. In Proceedings of SPIE Vol. 5089: Detection and Remediation Technologies for Mines and Minelike Targets VIII, 2003.

[15] R. Narayanaswami, A. Gandhe, R.K. Mehra, SUMATRA:  Supervised Modeling of ATR Algorithms, Proceedings of the IEEE 2010 National Aerospace and Electronics Conference (NAECON), July 2010.

[16] R. Narayanaswami, A. Gandhe, A. Tyurina, M. McComas, R. Mehra, Investigation of novel spectral and wavelet statistics for UGS-based intrusion detection, Unattended Ground, Sea, and Air Sensor Technologies and Applications XIV. Edited by Edward Carapezza. Proceedings of the SPIE, Vo. 8388, pp. 83880N-83880N-9 (2012).

Technical Excellence • Industry Partnerships • Customer Solutions